Flow-level performance analysis of data networks using processor sharing models
نویسنده
چکیده
Most telecommunication systems are dynamic in nature. The state of the network changes constantly as new transmissions appear and depart. In order to capture the behavior of such systems and to realistically evaluate their performance , it is essential to use dynamic models in the analysis. In this thesis, we model and analyze networks carrying elastic data traffic at flow level using stochastic queueing systems. We develop performance analysis methodology, as well as model and analyze example systems. The exact analysis of stochastic models is difficult and usually becomes computationally intractable when the size of the network increases, and hence efficient approximative methods are needed. In this thesis, we use two performance approximation methods. Value extrapolation is a novel approximative method developed during this work and based on the theory of Markov decision processes. It can be used to approximate the performance measures of Markov processes. When applied to queueing systems, value extrapolation makes possible heavy state space truncation while providing accurate results without significant computational penalties. Balanced fairness is a capacity allocation scheme recently introduced by Bonald and Proutì ere that simplifies performance analysis and requires less restrictive assumptions about the traffic than other capacity allocation schemes. We introduce an approximation method based on balanced fairness and the Monte Carlo method for evaluating large sums that can be used to estimate the performance of systems of moderate size with low or medium loads. The performance analysis methods are applied in two settings: load balancing in fixed networks and the analysis of wireless networks. The aim of load balancing is to divide the traffic load efficiently between the network resources in order to improve the performance. On the basis of the insensitivity results of Bonald and Proutì ere, we study both packet-and flow-level balancing in fixed data networks. We also study load balancing between multiple parallel discriminatory processor sharing queues and compare different balancing policies. In the final part of the thesis, we analyze the performance of wireless networks carrying elastic data traffic. Wireless networks are gaining more and more popularity, as their advantages, such as easier deployment and mobility, outweigh their downsides. First, we discuss a simple cellular network with link adaptation consisting of two base stations and customers located on a line between them. We model the system and analyze the performance using different capacity allocation policies. Wireless multihop networks are analyzed using two different MAC schemes. On …
منابع مشابه
"Technical Report" Performance Comparison of IHACRES Model and Artificial Neural Network to Predict the Flow of Sivand River
The accurate determination of river flow in watersheds without sufficient data is one of the major challenges in hydrology. In this regard, given the diversity of existing hydrological models, selection of an appropriate model requires evaluation of the performance of the hydrological models in each region. The objective of this study was to compare the performance of artificial neural network ...
متن کاملEstimation of Discharge over the Submerged Compound Sharp-Crested Weir using Artificial Neural Networks and Genetic Programming
Truncated sharp crested weirs are used to measure flow rate and control upstream water surface in irrigation canals and laboratory flumes. The main advantages of such weirs are ease of construction and capability of measuring a wide range of flows with sufficient accuracy. Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for estimation of hydraulic data. In...
متن کاملAn integrated packet/flow model for TCP performance analysis
Processor sharing (PS) models for TCP behavior nicely capture the bandwidth sharing and statistical multiplexing effect of TCP flows on the flow level. However, these ‘rough’ models do not provide insight into the impact of packet-level parameters (such as the round trip time and the buffer size) on, e.g., throughput and flow transfer times. This paper proposes an integrated packet/flow-level m...
متن کاملAn Incentive-Aware Lightweight Secure Data Sharing Scheme for D2D Communication in 5G Cellular Networks
Due to the explosion of smart devices, data traffic over cellular networks has seen an exponential rise in recent years. This increase in mobile data traffic has caused an immediate need for offloading traffic from operators. Device-to-Device(D2D) communication is a promising solution to boost the capacity of cellular networks and alleviate the heavy burden on backhaul links. However, dir...
متن کاملMonitoring of Regional Low-Flow Frequency Using Artificial Neural Networks
Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...
متن کامل